Reinforced Variational Inference

Théophane Weber¹, Nicolas Heess¹, Ali Eslami¹, John Schulman², David Wingate³, David Silver¹

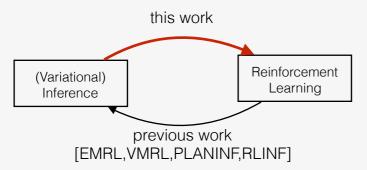
¹Google DeepMind

² University of California, Berkeley O

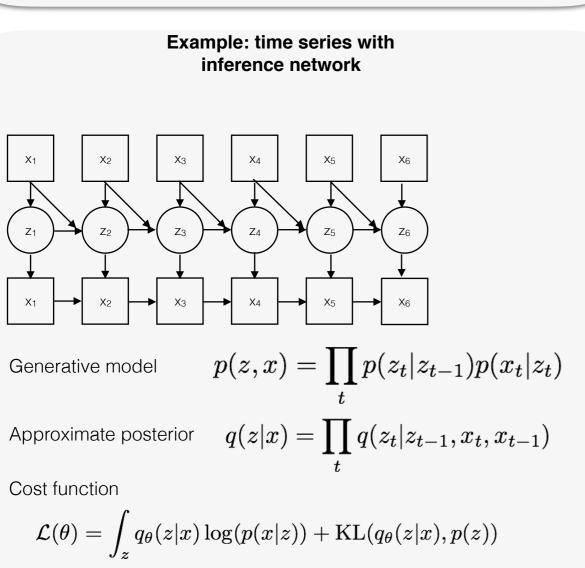
³ Brigham Young University 💮

Overview

- Variational Inference: Powerful method that leverages optimization technique for inference problems
- Reinforcement Learning: Powerful framework for sequential decision making under uncertainty

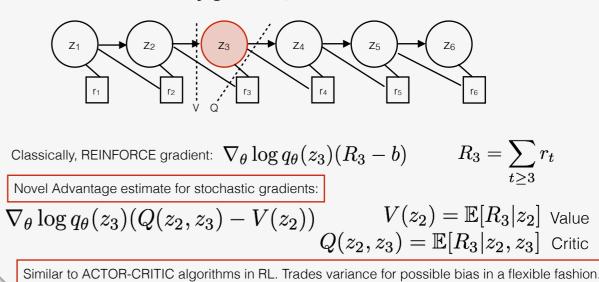


- ⇒ Unifies many concepts of VI from an RL standpoint.
- \Rightarrow Suggests new algorithms and methods for approximate inference.
- 14



Stochastic gradient (score function method)

$$\log(n(z, r))$$



General mapping

Generic expectation		RL		VI	
Optimization var.	θ	Policy param.	θ	Variational param.	θ
Integration var.	y	Trajectory	τ	Latent trace	z
Distribution	$p_{\theta}(y)$	Trajectory dist.	$p_{\theta}(\tau)$	Posterior dist.	$q_{\theta}(z x)$
Integrand	f(y)	Total return	$R(\tau)$	Free energy	$\log\left(rac{p(x,z)}{q_{ heta}(z x)} ight)$

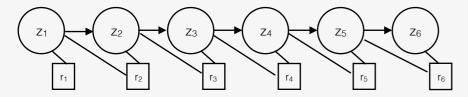
	RL	VIMDP
Context	—	x
Dynamic state	s_t	z_{k-1}
State	s_t	(z_{k-1},x)
Action	a_t	$z_k \sim q_{ heta}(z_k z_{k-1}, x)$
Transition	$(s_t, a_t) \rightarrow s_{t+1} \sim P(s s_t, a_t)$	$((z_{k-1}, x), z_k) \to (z_k, x)$
Instant reward	r_t	$\log\left(rac{p(z_k z_{k-1},x)}{q_ heta(z_k z_{k-1},x)} ight)$
Final reward	0	$\log p(x z_K)$

	Variational Inference:	Reinforcement learning
Z1 Z2 Z3	Log partition function Free-energies Rao-blackwellized free energies Mean-field posterior Structured posterior Per data point inference	Expected total cost Rewards Returns Open-loop control Closed-loop control Trajectory optimization
Z_4 Z_5 T_2 T_2 T_2	Amortized inference Baselines ??? ??? ??? ??? ??? ??? ???	Context-based control Value function Critics TD-learning Exploration Experience replay Your favorite RL technique

 $\nabla_{\theta} \mathcal{L}(\theta) = \mathbb{E} \left[\nabla_{\theta} \log q_{\theta}(z|x) \frac{\log(p(z,x))}{q_{\theta}(z|x)} \right]$

 $\mathcal{L} = \mathbb{E} \left| \sum_{t} r_t \right|$

Decomposing the cost - stochastic computation graph



Factored prior and posterior \Rightarrow cost can be distributed across time steps

 $r_t(z_t) = \log p(z_t|z_{t-1}) + \log p(x_t|z_t) - \log q(z_t|x_t, x_{t-1}, z_{t-1})$

Problem takes the form of sequential decision making

r₃ value $V(z_1, z_2)$ critic $Q(z_1, z_2, z_3)$

References

- [NVIL] Mnih & Gregor. Neural variational inference and learning in belief networks (2014).
- [SCG] Schulman, Heess, W., Abbeel, Gradient estimation using Stochastic Computation Graph (2015)
- [EMRL] Dayan & Hinton, Using Expectation-Maximization for Reinforcement Learning (1997)
- [VMRL] Furmston & Barber, Variational Methods for Reinforcement Learning (2010)
- [PLANINF] Botvinick & Toussaint, Planning as probabilistic inference (2012)
- [RLINF] Rawlik et al. On Stoc. Optimal Control and Reinforcement Learning by Approx. Inference (2012)
- [DATASEQ] Bachman & Precup, Data Generation as Sequential Decision Making (2015)
- [REINFORCE] Williams Simple statistical gradient-following algorithms for connectionist reinforcement learning (1992)