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Chicken and egg problem

(Panoramio/nicho593)

What is this?
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Chicken and egg problem

(Panoramio/nicho593)

Segment this
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The Segmentation Task

(Pascal VOC, Everingham et al., 2010)
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The segmentation task

Object class labelling
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The segmentation task

Foreground/background labelling
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The segmentation task

The image X The segmentation S
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Related research

◮ Continuity-based methods

S

X

binary potentials

unary potentials

p(X,S) or p(S|X)= 1
Z
exp{−E(X,S)}

◮ Shape-based methods

◮ Global models of shape
◮ Parts-based models of shape
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Related research

◮ Continuity-based methods

◮ Shape-based methods

◮ Global models of shape
◮ Parts-based models of shape

Multiple Cause Vector Quantization (Ross and Zemel, 2006)

Ali Eslami (Edinburgh) 15 of 41



Related research

◮ Continuity-based methods

◮ Shape-based methods

◮ Global models of shape
◮ Parts-based models of shape

Fragment CRF (Levin and Weiss, 2009)
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Related research
Summary

Model Continuity Shape Parts Part shape

LSM (Frey et al., 2003) X– FA

ISM (Leibe et al., 2004) X– fragments X ∼ – exemplars

GrabCut (Rother et al., 2004) X

OBJCUT (Kumar et al., 2005) X X– PS X

LOCUS (Winn and Jojic, 2005) X X– mask

LHRF (Kapoor and Winn, 2006) X X– part biases X ∼ – CRF

LCRF (Winn and Shotton, 2006) X

SPCRF (Fulkerson et al., 2009) X

FCRF (Levin and Weiss, 2009) X X– fragments X ∼ – exemplars

DPMCRF (Larlus et al., 2009) X X– DPM
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Approach
Shape model type

Three dimensional Two dimensional

Concerned with tractability
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Approach
Part shape variability

Need to model part shape variability
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Approach
Aspect variability

Rectangular Circular

Same object, different outlines
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Approach
Summary

Model overview

1. Capture the object’s shape using a number of deformable parts,

2. Combine models of different viewpoints in a mixture,

3. Use this as prior on a random field.

Goal
Learning of dense object class shape and parts from variable, realistic
datasets of images.

◮ Useful for both object segmentation and object parsing.

◮ More expressive power.
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Multiple Transformed Masks and Appearances

Task
To learn the shapes of the parts and infer their positions and appearances.
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Multiple Transformed Masks and Appearances
Schematic diagram
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Multiple Transformed Masks and Appearances

0 1 2

0 1 2

0 1 2

0 2

M

S

XA

T

p(sℓd = 1|T,θ) =
(Tℓ mℓ)d∑L

k=0(Tk mk)d

p(xd |A, sd ) =
L∏

l=0

N (xd ; (Waℓ + µ)d ,Ψd )
sℓd
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Multiple Transformed Masks and Appearances
Learning

Zi = {Ai ,Si ,Ti}

θ = {M}

Use Expectation Maximisation algorithm to find a setting of the masks
that approximately maximises the likelihood of the parameters given the
data p(D|θ):

1. Expectation: Evaluate p(Zi |Xi ,θold),

2. Maximisation: Find argmaxθ Q(θ,θold) where

Q(θ,θold) =
n∑

i=1

∑

Zi

p(Zi |Xi ,θold) ln p(Xi ,Zi |θ).

Ali Eslami (Edinburgh) 26 of 41



Multiple Transformed Masks and Appearances
Inference

Goal
Wish to find p(Z|X,θ) = p(A,S,T|X,θ).

Approximate

Instead approximate p(A,S,T|X,θ) by sampling in two steps:

1. Approximate p(T|X,θ) and draw KT|X samples of T,

2. For each sample T(k), draw from KA,S|T samples from p(S|A,T,X,θ)
and p(A|S,T,X,θ).

p(A,S,T|X,θ) ≃
1

KT|X

KT|X∑

k1=1

1

KA,S|T

KA,S|T∑

k2=1

δ(A(k2),S(k2),T(k1))
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Wish to find p(Z|X,θ) = p(A,S,T|X,θ).

Approximate

Instead approximate p(A,S,T|X,θ) by sampling in two steps:

1. Approximate p(T|X,θ) and draw KT|X samples of T,

◮ Näıve implementation exponential in L, use greedy algorithm (Williams
and Titsias, 2004) instead.

2. For each sample T(k), draw from KA,S|T samples from p(S|A,T,X,θ)
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Multiple Transformed Masks and Appearances
Results

◮ Dataset of 30 images: n = 30.

◮ Transformations discretised into 3 vertical translations: J = 3.

◮ Running time ∼3 minutes: 10 EM iterations.
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Multiple Transformed Masks and Appearances
Results
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Future work

1. Learning inter-part relationships.

2. Incorporating richer part shape models.

3. Determining the number of parts.

4. Incorporating low-level image features.

5. Modelling aspect variability.
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Questions
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Multiple Transformed Masks and Appearances
The model

Observed variables
Dataset D = {Xi}, i = 1...n of images X, each consisting of D pixels xd ,
each in a C -dimensional feature space: xd = (xdc), xdc ∈ [0, 1].

Query variables

For Xi , a segmentation Si consisting of D labelings sd . sd is a
1-of-(L+ 1) encoded variable, where L is the fixed number of ‘parts’ that
combine to generate the images: sd = (sℓd), sℓd ∈ {0, 1},

∑
ℓ sℓd = 1.

Output

Pixel xd background if s0d = 1, foreground otherwise.
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Multiple Transformed Masks and Appearances
The model

Parameters
Mask variables mℓ. Each is a collection of positive real numbers, densely
representing the model’s preference for part ℓ’s shape. Background layer’s
mask constrained to a vector of ones, i.e. m0 = 1.

Latent variables

◮ Transformation variables Tℓ. Each is a permutation matrix, here
constrained to 2D translations.

◮ Appearance variables aℓ. Can be thought of as low-dimensional latent
representations of the parts’ appearances.
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Multiple Transformed Masks and Appearances
The graphical model

mℓ

Tℓ sd

aℓ xd

L

DL

N
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Multiple Transformed Masks and Appearances
Summary of the model

Zi = {Ai ,Si ,Ti}

θ = {M}

p(X1, ...,Xn,Z1, ...,Zn|θ) =
n∏

i=1

p(Xi ,Zi |θ)

p(X,A,S,T|M) = p(A) p(T)p(X|A,S) p(S|T,M)

= p(A) p(T)
D∏

d=1

p(xd |A, sd) p(sd |T,M)
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Multiple Transformed Masks and Appearances
Learning

Goal
Approximate p(T|X,θ) and draw KT|X samples of T.

Problem

◮ Discretise each layer’s transformation space into J values.

◮ Inference involves a total of O(JL) computations.

Solutions

◮ Variational techniques (Frey et al., 2003).

◮ Greedy approach (Williams and Titsias, 2004).
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Multiple Transformed Masks and Appearances
Learning

Goal
Wish to find argmaxθ Q(θ,θold).

Approximate

◮ Compute ∂Q
∂mℓd

(involved but can be done efficiently).

◮ Use Scaled Conjugate Gradients optimisation to maximise Q.

◮ Results in a Generalised EM algorithm.
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